

    
      
          
            
  
FedSim 0.9.1 documentation




FedSim is a comprehensive and flexible Federated Learning Simulator. It aims to provide the researchers with an easy to develope/maintain simulator for Federated Learning.
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Getting Started





Install FedSim and simulate your first Federated Learning Simulation in 2 lines.








Download & Train
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User Guide





The user guide provides in-depth information on what you can do with FedSim.








To the user guide
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API Reference





The reference guide contains a detailed description of the functions,
modules, and objects included in FedSim. The reference describes how the
methods work and which parameters can be used.








To the reference guide
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Contributor's Guide





FedSim is an open source project. We are open to community contributions and are thankful of all the efforts made. Check here for how to develepe/contribute.








To the contributor's guide

















            

          

      

      

    

  

    
      
          
            
  
Easy install and run







Install using pip [https://pypi.org/project/fedsim]:

pip install fedsim

















Train MNIST on 500 clients:

fedsim-cli fed-learn




















            

          

      

      

    

  

    
      
          
            
  
User guide

This guide is an overview and explains the important features;
details are found in API Reference.



	Quick User Guide

	Guide to data manager

	Guide to centralized FL algorithms

	Guide to models

	Guide to optimziers

	Guide to scores

	Guide to learning rate schedulers

	Fine-tuning








            

          

      

      

    

  

    
      
          
            
  
Quick User Guide


FedSim

[image: GitHub Actions Build Status]
 [https://github.com/varnio/fedsim/actions][image: PyPI Package latest release]
 [https://pypi.org/project/fedsim][image: ../_images/62bcd837d76eceabdea04f85506d728d685e4dad.svg]
 [https://fedsim.readthedocs.io/en/latest/?badge=stable][image: PyPI Wheel]
 [https://pypi.org/project/fedsim][image: Supported versions]
 [https://pypi.org/project/fedsim][image: Supported implementations]
 [https://pypi.org/project/fedsim][image: ../_images/badge1.svg]
 [https://codecov.io/gh/varnio/fedsim][image: ../_images/code%20style-black-000000.svg]
 [https://github.com/psf/black][image: Gitter]
 [https://gitter.im/varnio/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge]FedSim is a comprehensive and flexible Federated Learning Simulator! It aims to provide the researchers with an easy to develope/maintain simulator for Federated Learning.
See documentation at here [https://fedsim.varnio.com/en/latest/]!



Installation

pip install fedsim





That's it! You are all set!





Design Architecture

[image: ../_images/arch1.svg]

CLI


Minimal example

Fedsim provides powerful cli tools that allow you to focus on designing what is truly important.
Simply enter the following command to begin federatively training a model.

fedsim-cli fed-learn





The "MNIST" dataset is partitioned on 500 clients by default, and the FedAvg algorithm is used to train a minimal model with two fully connected layers.
A text file is made that descibes the configuration for the experiment and a summary of results when it is finished. Additionally, a tensorboard log file is made to monitor the scores/metrics of the training.
The directory that these files are stored is (reconfigurable and is) displayed while the experiment is running.

[image: ../_images/one_line_train.gif]


Hooking scores to cli tools

In case you are interested in a certain metric you can make a query for it in your command.
For example, lets assume we would like to test and report:
* the accuracy score of the global model on global test dataset both every 21 rounds and every 43 rounds.
* the average accuracy score of the local models every 15 rounds.
Here's how we modify the above command:

fedsim-cli fed-learn \
    --global-score Accuracy score_name:acc21 split:test log_freq:21 \
    --global-score Accuracy score_name:acc43 split:test log_freq:43 \
    --local-score Accuracy split:train log_freq:15





[image: ../_images/add_metrics.gif]
[image: ../_images/tb_ex.png]
Check Fedsim Scores Page [https://fedsim.varnio.com/en/latest/reference/fedsim.scores.html] for the list of all other scores like Accyracy or define your custom score.



Changing the Data

Data partitioning and retrieval is controlled by a DataManager object. This object could be controlled through -d or --data-manager flag in most cli commands.
In the following we modify the arguments of the default DataManager such that CIFAR100 is partitioned over 1000 clients.

fedsim-cli fed-learn \
    --data-manger BasicDataManager dataset:cifar100 num_partitions:1000 \
    --num-clients 1000 \
    --model SimpleCNN2 num_classes:100 \
    --global-score Accuracy split:test log_freq:15





Notice that we also changed the model from default to SimpleCNN2 which by default takes 3 input channels.
You can learn about existing data managers at data manager documentation [https://fedsim.varnio.com/en/latest/reference/fedsim.distributed.data_management.html] and Custom data managers at this guide to make Custom data managers [https://fedsim.varnio.com/en/latest/user/data_manager.html].


Note

Arguments of the constructor of any component (rectangular boxes in the image of design architecture) could be given in arg:value format following its name (or path if a local file is provided).
Among these component, the algorithm is special, in that the arguments are controlled internally. The only arguments of the algorithm object that could be directly controlled in your commands is the algorithm specific ones (mostly hyper-parameters).
Examples:

fedsim-cli fed-learn --algorithm AdaBest mu:0.01 beta:0.6 ...









Feed CLI with Customized Components

The cli tool can take a locally defined component by ingesting its path.
For example, to automatically include your custom algorithm by the a command of the cli tool, you can place your class in a python file and pass the path of the file to -a or --algorithm option (without .py) followed by colon and name of the algorithm definition (class or method).
For instance, if you have algorithm CustomFLAlgorithm stored in a foo/bar/my_custom_alg.py, you can pass --algorithm foo/bar/my_custom_alg:CustomFLAlgorithm.

fedsim-cli fed-learn --algorithm foo/bar/my_custom_alg_file:CustomFLAlgorithm mu:0.01 ...





The same is possible for any other component, for instance for a Custom model:

fedsim-cli fed-learn --model foo/bar/my_model_file:CustomModel num_classes:1000 ...







More about cli commands

For help with cli check fedsim-cli documentation [https://fedsim.varnio.com/en/latest/clidoc/index.html] or read the output of the following commands:

fedsim-cli --help
fedsim-cli fed-learn --help
fedsim-cli fed-tune --help








Python API

Fedsim is shipped with some of the most well-known Federated Learning algorithms included. However, you will most likely need to quickly develop and test your custom algorithm, model, data manager, or score class.
Fedsim has been designed in such a way that doing all of these things takes almost no time and effort. Let's start by learning how to import and use Fedsim, and then we'll go over how to easily modify existing modules and classes to your liking.
Check the following basic example:

from logall import TensorboardLogger
from fedsim.distributed.centralized.training import FedAvg
from fedsim.distributed.data_management import BasicDataManager
from fedsim.models import SimpleCNN2
from fedsim.losses import CrossEntropyLoss
from fedsim.scores import Accuracy

n_clients = 1000

dm = BasicDataManager("./data", "cifar100", n_clients)
sw = TensorboardLogger(path=None)

alg = FedAvg(
    data_manager=dm,
    num_clients=n_clients,
    sample_scheme="uniform",
    sample_rate=0.01,
    model_def=partial(SimpleCNN2, num_channels=3),
    epochs=5,
    criterion_def=partial(CrossEntropyLoss, log_freq=100),
    batch_size=32,
    metric_logger=sw,
    device="cuda",
)
alg.hook_local_score(
    partial(Accuracy, log_freq=50),
    split='train,
    score_name="accuracy",
)
alg.hook_global_score(
    partial(Accuracy, log_freq=40),
    split='test,
    score_name="accuracy",
)
report_summary = alg.train(rounds=50)







Side Notes


	Do not use double underscores (__) in argument names of your customized classes.








            

          

      

      

    

  

    
      
          
            
  
Guide to data manager

Provided with the simulator is a basic DataManager called BasicDataManager which for now supports the following datasets


	MNIST [http://yann.lecun.com/exdb/mnist/]


	CIFAR10 [https://www.cs.toronto.edu/~kriz/cifar.html]


	CIFAR100 [https://www.cs.toronto.edu/~kriz/cifar.html]




It supports the popular partitioning schemes (iid, Dirichlet distribution, unbalanced, etc.).


Custom DataManager

Any Custom data manager class should inherit from fedsim.data_manager.data_manager.DataManager (or its children) and implement its abstract methods.



DataManager Template

from fedsim.distributed.data_management import DataManager

class CustomDataManager(DataManager)
     def __init__(self, root, seed, save_dir=None, other_args="default value", ...):
         self.other_arg = other_arg
         """
         apply the changes required by the abstract methods here (before calling
         super's constructor).
         """
         super(BasicDataManager, self).__init__(root, seed, save_dir=save_dir)
         """
         apply the operation that assume the abstract methods are performed here
         (after calling super's constructor).
         """


     def make_datasets(self, root: str) -> Tuple[object, object]:
         """makes and returns local and global dataset objects. The created datasets do
         not need a transform as recompiled datasets with separately provided transforms
         on the fly (for vision datasets).

         Args:
             dataset_name (str): name of the dataset.
             root (str): directory to download and manipulate data.

         Raises:
             NotImplementedError: this abstract method should be
                 implemented by child classes

         Returns:
             Tuple[object, object]: local and global dataset
         """
         raise NotImplementedError

     def make_transforms(self) -> Tuple[object, object]:
         """make and return the dataset trasformations for local and global split.

         Raises:
             NotImplementedError: this abstract method should be
                 implemented by child classes
         Returns:
             Tuple[Dict[str, Callable], Dict[str, Callable]]: tuple of two dictionaries,
                 first, the local transform mapping and second the global transform
                 mapping.
         """
         raise NotImplementedError

     def partition_local_data(self, datasets: Dict[str, object]) -> Dict[str, Iterable[Iterable[int]]]:
         """partitions local data indices into splits and within each split, partition in client-indexed Iterable.
         Return a dictionary of these splits (e.g., train, test, ...).

         Args:
             dataset (object): local dataset

         Raises:
             NotImplementedError: this abstract method should be
                 implemented by child classes

         Returns:
             Dict[str, Iterable[Iterable[int]]]:
                 dictionary of {split:client-indexed iterables of example indices}.
         """
        raise NotImplementedError


     def partition_global_data(
         self,
         dataset: object,
     ) -> Dict[str, Iterable[int]]:
         """partitions global data indices into desired splits (e.g., train, test, ...).

         Args:
             dataset (object): global dataset

         Returns:
             Dict[str, Iterable[int]]:
                 dictionary of {split:example indices of global dataset}.
         """
         raise NotImplementedError

     def get_identifiers(self) -> Sequence[str]:
         """ Returns identifiers to be used for saving the partition info.
         A unique identifier for a unique setup ensures the credibility of comparing your experiments results.

         Raises:
             NotImplementedError: this abstract method should be
                 implemented by child classes

         Returns:
             Sequence[str]: a sequence of str identifing class instance
         """
         raise NotIm






Note

scores can be passed to --criterion option the same way, however, if the selected score class is not differentiable an error may be raised (if necessary).plementedError



You can use BasicDataManager as a working template [https://fedsim.varnio.com/en/latest/reference/fedsim.distributed.data_management.basic_data_manager.html].


Integration with fedsim-cli

To automatically include your custom data-manager into the provided cli tool, you can define it in a python file and pass its path to -a or --data-manager option (without .py) followed by colon and the definition of the data-manager (class or method).
For example, if you have data-manager DataManager stored in foo/bar/my_custom_dm.py, you can pass --data-manager foo/bar/my_custom_dm:DataManager.


Note

Arguments of constructor of any data-manager could be given in arg:value format following its name (or path if a local file is provided). Examples:

fedsim-cli fed-learn --data-manager BasicDataManager num_clients:1100 ...





fedsim-cli fed-learn --data-manager foo/bar/my_custom_dm:DataManager arg1:value ...












            

          

      

      

    

  

    
      
          
            
  
Guide to centralized FL algorithms


Included FL algorithms







	Alias

	Paper





	FedAvg

	[image: arXiv]
 [https://arxiv.org/abs/1602.05629]


	FedNova

	[image: arXiv]
 [https://arxiv.org/abs/2007.07481]


	FedProx

	[image: arXiv]
 [https://arxiv.org/abs/1812.06127]


	FedDyn

	[image: arXiv]
 [https://arxiv.org/abs/2111.04263]


	AdaBest

	[image: arXiv]
 [https://arxiv.org/abs/2204.13170]


	FedDF

	[image: arXiv]
 [https://arxiv.org/abs/2006.07242]







Algorithm interface

Look at the design architecture illustrated in the image below.
.. image:: ../_static/arch.svg



Custom Centralized FL Algorithm

Implementing a new fedsim algorithm is very simple. There are on three things to remember:
1. any Custom FL algorithm class has to inherit from a base algorithm (e.g., CentralFLAlgorithm) or one of their children classes (e.g., FedAvg).
2. the user methods should be implemented (see an algorithm template below) withoud self argument (static methods).
3. global models/parameters have to be cloned and detached before local training.

fedsim.distributed.centralized.CentralFLAlgorithm (or its children) and implement its abstract methods.



Algorithm Template

from fedsim.distributed.centralized.centralized_fl_algorithm import CentralFLAlgorithm


class GreetingAlgorithm(CentralFLAlgorithm):
    def init(server_storage):
        # do operations required prior to training. For exampel you can make your model and optimizer here.
        # use read and write methods of server_storage to retrieve definitions and store the result of your operation.
        # server_storage.get_keys() returns list of definitions required to build objects you like.
        model_def = server_storage.read("model_def")
        model = model_def()
        server_storage.write("model", model)

    def send_to_client(server_storage, client_id):
        # add your message for client with id <client_id> here. This method runs at the beginning of each round for each sampled client.
        return f"Hello client {client_id}!"

    def send_to_server(
        id, rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size,
        inference_batch_size, optimizer_def, lr_scheduler_def=None, device="cuda", ctx=None, step_closure=None,
    ):
        # this is what client <id> does locally. ``ctx`` is the message send from the server.
        print(f"Message received from server on client {id}: {ctx}")
        return f"Hello server, this is {id}!"

    def receive_from_client(server_storage, client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator):
        # this method is to collect information from clients as their messages arrive.
        # use serial_aggregator.add amd appendix_aggregator.append to serially aggregate pieces of info received from the client.
        print(f"Message from {client_id}: {client_msg}")
        # return True if message is received without any problems
        return True

    def optimize(server_storage, serial_aggregator, appendix_aggregator):
        # optimize the server parameters here. Additionally, unpack and arrange the reports from the aggregators here.
        # return yuor optimization reports (along with those unpacked from the aggtegators)
        return f"Nothing to report here!"

    def deploy(server_storage):
        # send the deployment points, so that the report can be made for those points
        return dict(point1="foo", point2="bar")

    def report(server_storage, dataloaders, rounds, scores, metric_logger, device, optimize_reports, deployment_points=None):
        # report your findings using metric_logger. Those metrics that are in scalar format can be returned in a dictionary (with their name as the key).
        # the entries in the returned dictionary are automatically reported using metric_logger
        return dict(x=1, y=2)







Examples

Here's the complete implementation of Federated Averaging (FedAvg) algorithm which could be used as a template:

import math
from torch.utils.data import DataLoader
from torch.utils.data import RandomSampler
from fedsim.local.training import local_inference
from fedsim.local.training import local_train
from fedsim.local.training.step_closures import default_step_closure
from fedsim.utils import initialize_module
from fedsim.utils import vectorize_module

from fedsim.distributed.centralized import CentralFLAlgorithm
from fedsim.distributed.centralized.training import serial_aggregation


class FedAvg(CentralFLAlgorithm):
    def init(server_storage):
        device = server_storage.read("device")
        model = server_storage.read("model_def")().to(device)
        params = vectorize_module(model, clone=True, detach=True)
        optimizer = server_storage.read("optimizer_def")(params=[params])
        lr_scheduler = None
        lr_scheduler_def = server_storage.read("lr_scheduler_def")
        if lr_scheduler_def is not None:
            lr_scheduler = lr_scheduler_def(optimizer=optimizer)
        server_storage.write("model", model)
        server_storage.write("cloud_params", params)
        server_storage.write("optimizer", optimizer)
        server_storage.write("lr_scheduler", lr_scheduler)

    def send_to_client(server_storage, client_id):
        # load cloud stuff
        cloud_params = server_storage.read("cloud_params")
        model = server_storage.read("model")
        # copy cloud params to cloud model to send to the client
        initialize_module(model, cloud_params, clone=True, detach=True)
        # return a copy of the cloud model
        return dict(model=model)

    # define client operation
    def send_to_server(
        id, rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size,
        inference_batch_size, optimizer_def, lr_scheduler_def=None, device="cuda", ctx=None, step_closure=None,
    ):
        # create a random sampler with replacement so that
        # stochasticity is maximiazed and privacy is not compromized
        sampler = RandomSampler(
            datasets[train_split_name], replacement=True,
            num_samples=math.ceil(len(datasets[train_split_name]) / train_batch_size) * train_batch_size,
        )
        # # create train data loader
        train_loader = DataLoader(datasets[train_split_name], batch_size=train_batch_size, sampler=sampler)

        model = ctx["model"]
        optimizer = optimizer_def(model.parameters())
        lr_scheduler = None if lr_scheduler_def is None else lr_scheduler_def(optimizer=optimizer)

        # optimize the model locally
        step_closure_ = default_step_closure if step_closure is None else step_closure
        train_scores = scores[train_split_name] if train_split_name in scores else dict()
        num_train_samples, num_steps, diverged, = local_train(
            model, train_loader, epochs, 0, criterion, optimizer, lr_scheduler, device, step_closure_,
            scores=train_scores,
        )
        # get average train scores
        metrics_dict = {train_split_name: {name: score.get_score() for name, score in train_scores.items()}}
        # append train loss
        if rounds % criterion.log_freq == 0:
            metrics_dict[train_split_name][criterion.get_name()] = criterion.get_score()
        num_samples_dict = {train_split_name: num_train_samples}
        # other splits
        for split_name, split in datasets.items():
            if split_name != train_split_name and split_name in scores:
                o_scores = scores[split_name]
                split_loader = DataLoader( split, batch_size=inference_batch_size, shuffle=False)
                num_samples = local_inference(model, split_loader, scores=o_scores, device=device)
                metrics_dict[split_name] = {name: score.get_score() for name, score in o_scores.items()}
                num_samples_dict[split_name] = num_samples
        # return optimized model parameters and number of train samples
        return dict(local_params=vectorize_module(model), num_steps=num_steps, diverged=diverged,
            num_samples=num_samples_dict,metrics=metrics_dict,
        )

    def receive_from_client(
        server_storage, client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator
    ):
        return serial_aggregation(
            server_storage, client_id, client_msg, train_split_name, serial_aggregator
        )

    def optimize(server_storage, serial_aggregator, appendix_aggregator):
        if "local_params" in aggregator:
            param_avg = aggregator.pop("local_params")
            optimizer = server_storage.read("optimizer")
            lr_scheduler = server_storage.read("lr_scheduler")
            cloud_params = server_storage.read("cloud_params")
            pseudo_grads = cloud_params.data - param_avg
            # update cloud params
            optimizer.zero_grad()
            cloud_params.grad = pseudo_grads
            optimizer.step()
            if lr_scheduler is not None:
                lr_scheduler.step()
            # purge aggregated results
            del param_avg
        return aggregator.pop_all()

    def deploy(server_storage):
        return dict(avg=server_storage.read("cloud_params"))

    def report(
        server_storage, dataloaders, rounds, scores, metric_logger, device, optimize_reports, deployment_points=None,
    ):
        model = server_storage.read("model")
        scores_from_deploy = dict()
        if deployment_points is not None:
            for point_name, point in deployment_points.items():
                # copy cloud params to cloud model to send to the client
                initialize_module(model, point, clone=True, detach=True)

                for split_name, loader in dataloaders.items():
                    if split_name in scores:
                        split_scores = scores[split_name]
                        _ = local_inference(model, loader,scores=split_scores, device=device)
                        split_score_results = {
                            f"server.{point_name}.{split_name}." f"{score_name}": score.get_score()
                            for score_name, score in split_scores.items()
                        }
                        scores_from_deploy = {
                            **scores_from_deploy,
                            **split_score_results,
                        }
        return {**scores_from_deploy, **optimize_reports, **norm_reports}





You can easily make changes by inheriting from FedAvg or its children classes.
For example the following is the implementation of FedProx algorithm:

from functools import partial
from torch.nn.utils import parameters_to_vector
from fedsim.local.training.step_closures import default_step_closure
from fedsim.utils import vector_to_parameters_like
from fedsim.utils import vectorize_module
from fedsim.distributed.centralized import FedAvg


class FedProx(FedAvg):
    def init(server_storage, *args, **kwrag):
        default_mu = 0.0001
        FedAvg.init(server_storage)
        server_storage.write("mu", kwrag.get("mu", default_mu))

    def send_to_client(server_storage, client_id):
        server_msg = FedAvg.send_to_client(server_storage, client_id)
        server_msg["mu"] = server_storage.read("mu")
        return server_msg

    def send_to_server(
        id, rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size,
        inference_batch_size, optimizer_def, lr_scheduler_def=None, device="cuda", ctx=None, step_closure=None,
    ):
        model = ctx["model"]
        mu = ctx["mu"]
        params_init = vectorize_module(model, clone=True, detach=True)

        def transform_grads_fn(model):
            params = parameters_to_vector(model.parameters())
            grad_additive = 0.5 * (params - params_init)
            grad_additive_list = vector_to_parameters_like(mu * grad_additive, model.parameters())

            for p, g_a in zip(model.parameters(), grad_additive_list):
                p.grad += g_a

        step_closure_ = partial(default_step_closure, transform_grads=transform_grads_fn)
        return FedAvg.send_to_server(
            id, rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size,
            inference_batch_size, optimizer_def, lr_scheduler_def, device, ctx, step_closure=step_closure_,
        )






Integration with fedsim-cli

To automatically include your custom algorithm by the provided cli tool, you can define it in a python and pass its path to -a or --algorithm option (without .py) followed by column and name of the algorithm.
For example, if you have algorithm CustomFLAlgorithm stored in a foo/bar/my_custom_alg.py, you can pass --algorithm foo/bar/my_custom_alg:CustomFLAlgorithm.


Note

Non-common Arguments of constructor of any algoritthm (mostly hyper-parameters) could be given in arg:value format following its name (or path if a local file is provided).
Areguments that are common among the desired algorithm and CentralFLAlgorithm are internally assigned. Examples:

fedsim-cli fed-learn --algorithm AdaBest mu:0.01 beta:0.6 ...





fedsim-cli fed-learn --algorithm foo/bar/my_custom_alg:CustomFLAlgorithm mu:0.01 ...












            

          

      

      

    

  

    
      
          
            
  
Guide to models


Custom Model

Any custom model class should inherit from torch.Module (or its children) and implement its abstract methods.


Integration with fedsim-cli

To automatically include your custom model by the provided cli tool, you can define it in a python file and pass its path to -m or --model option (without .py) followed by column and name of the model definition (class or method).
For example, if you have model CustomModel stored in a foo/bar/my_custom_model.py, you can pass --model foo/bar/my_custom_alg:CustomModel.


Note

Arguments of constructor of any model could be given in arg:value format following its name (or path if a local file is provided). Examples:

fedsim-cli fed-learn --model cnn_mnist num_classes:8 ...





fedsim-cli fed-learn --model foo/bar/my_custom_alg:CustomModel num_classes:8 ...












            

          

      

      

    

  

    
      
          
            
  
Guide to optimziers


Custom optimziers

Any custom optimizer class should inherit from torch.optim.Optimizer (or its children) and implement its abstract methods.


Integration with fedsim-cli

To automatically include your custom optimizer by the provided cli tool, you can define it in a python file and pass its path to --optimzier or --local-optimzier option (without .py) followed by column and name of the optimizer definition (class or method).
For example, if you have optimizer CustomOpt stored in a foo/bar/my_custom_opt.py, you can pass --optimizer foo/bar/my_custom_opt:CustomOpt for setting global optimizer or --local-optimizer foo/bar/my_custom_opt:CustomOpt for setting the local optimizer.


Note

Arguments of constructor of any optimzier could be given in arg:value format following its name (or path if a local file is provided). Examples:

fedsim-cli fed-learn --optimzier SGD lr:0.1 weight_decay:0.001 ...





fedsim-cli fed-learn --local-optimizer foo/bar/my_custom_opt:CustomOpt lr:0.2 momentum:True ...












            

          

      

      

    

  

    
      
          
            
  
Guide to scores


Custom scores

Any custom score class should inherit from fedsim.scores.Score (or its children) and implement its abstract methods.


Integration with fedsim-cli

To automatically include your custom score by the provided cli tool, you can define it in a python file and pass its path to --global-score or --local-score option (without .py) followed by column and name of the score definition (class or method).
For example, if you have score CustomScore stored in a foo/bar/my_custom_score.py, you can pass --global-score foo/bar/my_custom_score:CustomScore for setting global optimizer or --local-score foo/bar/my_custom_score:CustomScore for setting the local score.


Note

Arguments of constructor of any score could be given in arg:value format following its name (or path if a local file is provided). Examples:

fedsim-cli fed-learn --global-score Accuracy log_freq:20 split:test ...





fedsim-cli fed-learn --local-score foo/bar/my_custom_sore:CustomScore log_freq:30 split:train ...








Note

scores can be passed to --criterion option the same way, however, if the selected score class is not differentiable an error may be raised (if necessary).








            

          

      

      

    

  

    
      
          
            
  
Guide to learning rate schedulers

fedsim-cli fed-learn accepts 3 scheduler objects.


	lr-scheduler: learning rate scheduler for server optimizer.


	local-lr-scheduler: learning rate scheduler for client optimizer.


	r2r-local-lr-scheduler: schedules the initial learning rate that is delivered to the clients of each round.




These arguments are passed to instances of the centralized FL algorithms.


Note

Choose learning rate schedulers from torch.optim.lr_scheduler documented at Lr Schedulers Page [https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#CosineAnnealingWarmRestarts] or define a learning rate scheduler class that has the common methods (step, get_last_lr, etc.).




Note

For now fedsim-cli does not support the learning rate schedulers that require another object in their constructor (such as LambdaLR) or a dynamic value in their step function (ReduceLROnPlateau).
To implement one with similar functionality, you can implement one and assign it to self.r2r_local_lr_scheduler inside the constructor of your custom algorithm (after calling super).




Custom Learning Rate Scheduler

Any custom learning rate scheduler class should implement the common methods of torch optim lr schedulers.


Integration with fedsim-cli

To automatically include your custom lr scheduler by the provided cli tool, you can define it in a python file and pass its path to --lr-scheduler or --local-lr-scheduler or r2r-local-lr-scheduler option (without .py) followed by column and name of the lr scheduler definition (class or method).
For example, if you have score CustomLRS stored in a foo/bar/my_custom_lr_scheduler.py, you can pass --lr-scheduler foo/bar/my_custom_lr_scheduler:CustomLRS for setting global lr scheduler or --local-lr-scheduler foo/bar/my_custom_lr_scheduler:CustomLRS for setting the local lr scheduler or --r22-local-lr-scheduler foo/bar/my_custom_lr_scheduler:CustomLRS for setting the round to round lr scheduler.
The latter determines the initial learning rate of the local optimizer at each round.


Note

Arguments of constructor of any lr scheduler could be given in arg:value format following its name (or path if a local file is provided). Examples:

fedsim-cli fed-learn --lr-scheduler StepLR step_size:200 gamma:0.5 ...





fedsim-cli fed-learn --local-lr-scheduler foo/bar/my_custom_lr_scheduler:CustomLRS step_size:10 beta:0.1 ...












            

          

      

      

    

  

    
      
          
            
  
Fine-tuning

The cli includes a fine-tuning tool. Under the hood fedsim-cli fed-tune uses Bayesian optimization
provided by scikit-optimize (skopt) [https://scikit-optimize.github.io/stable/] to tune the hyper-parameters. Besides skopt argumetns, it accepts
all arguments that could be used by fedsim-cli fed-learn. The arguments values could
be defined as search spaces.


	To define a float range to tune use Real keyword as the argument value (e.g., mu:Real:0-0.1)


	To define an integer range to tune use Integer keyword as the argument value (e.g., arg1:Integer:2-15)


	To define a categorical range to tune use Categorical keyword as the argument value (e.g., arg2:Categorical:uniform-normal-special)




Examples

fedsim-cli fed-tune --epochs 1 --n-clients 2 --client-sample-rate 0.5 -a AdaBest mu:Real:0-0.1 beta:Real:0.3-1 --maximize-metric --n-iters 20








            

          

      

      

    

  

    
      
          
            
  
API Reference


	Release

	0.9.1



	Date

	Sep 23, 2022





This reference manual details functions, modules, and objects
included in FedSim, describing what they are and what they do.
For learning how to use FedSim, see the complete documentation.



	FedSim
	Distributed Learning

	Local

	Models

	Utils

	Fedsim Scores





	FedSim cli
	fed-learn

	fed-tune












            

          

      

      

    

  

    
      
          
            
  
FedSim

Comprehensive and flexible Federated Learning Simulator!



	Distributed Learning

	Local

	Models

	Utils

	Fedsim Scores








            

          

      

      

    

  

    
      
          
            
  
Distributed Learning



	Centralized Distributed Learning

	Data Management

	Decentralized Distributed Learning








            

          

      

      

    

  

    
      
          
            
  
Centralized Distributed Learning



	Centralized Compression

	Centralized Privacy

	Centralized Training

	Centralized Federated Learnming Algorithm








            

          

      

      

    

  

    
      
          
            
  
Centralized Compression

There are no centralized compressions algorithms defined in this version.







            

          

      

      

    

  

    
      
          
            
  
Centralized Privacy

There are no centralized privacy algorithms defined in this version.







            

          

      

      

    

  

    
      
          
            
  
Centralized Training

Algorithms for centralized Federated  training.



	AdaBest

	FedAvg

	AvgLogits

	FedDyn

	FedNova

	FedProx

	Distributed Centralized Trainign Utils








            

          

      

      

    

  

    
      
          
            
  
AdaBest


	
class AdaBest(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Implements AdaBest algorithm for centralized FL.

For further details regarding the algorithm we refer to AdaBest: Minimizing Client
Drift in Federated Learning via Adaptive Bias Estimation [https://arxiv.org/abs/2204.13170].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number


	mu (float) -- AdaBest's \(\mu\) hyper-parameter for local regularization


	beta (float) -- AdaBest's \(\beta\) hyper-parameter for global regularization









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











	
deploy()

	return Mapping of name -> parameters_set to test the model


	Parameters

	server_storage (Storage) -- server storage object.










	
init(*args, **kwrag)

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
optimize(serial_aggregator, appendix_aggregator)

	optimize server mdoel(s) and return scores to be reported


	Parameters

	
	server_storage (Storage) -- server storage object.


	serial_aggregator (SerialAggregator) -- serial aggregator instance of current
round.


	appendix_aggregator (AppendixAggregator) -- appendix aggregator instance of
current round.






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- context to be reported










	
receive_from_client(client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator)

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child










	
send_to_client(client_id)

	returns context to send to the client corresponding to client_id.


Warning

Do not send shared objects like server model if you made any
before you deepcopy it.




	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the receiving client






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- the context to be sent in form of a Mapping










	
send_to_server(rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size, inference_batch_size, optimizer_def, lr_scheduler_def=None, device='cuda', ctx=None, step_closure=None)

	client operation on the recieved information.


	Parameters

	
	id (int) -- id of the client


	rounds (int) -- global round number


	storage (Storage) -- storage object of the client


	datasets (Dict[str, Iterable]) -- this comes from Data Manager


	train_split_name (str) -- string containing name of the training split


	scores -- Dict[str, Dict[str, Score]]: dictionary of
form {'split_name':{'score_name': Score}} for global scores to
evaluate at the current round.


	epochs (int) -- number of epochs to train


	criterion (Score) -- citerion, should be a differentiable fedsim.scores.score


	train_batch_size (int) -- training batch_size


	inference_batch_size (int) -- inference batch_size


	optimizer_def (float) -- class for constructing the local optimizer


	lr_scheduler_def (float) -- class for constructing the local lr scheduler


	device (Union[int, str], optional) -- Defaults to 'cuda'.


	ctx (Optional[Dict[Hashable, Any]], optional) -- context reveived.






	Returns

	Mapping[str, Any] -- client context to be sent to the server
















            

          

      

      

    

  

    
      
          
            
  
FedAvg


	
class FedAvg(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Implements FedAvg algorithm for centralized FL.
For further details regarding the algorithm we refer to Communication-Efficient
Learning of Deep Networks from Decentralized Data [https://arxiv.org/abs/1602.05629].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











	
deploy()

	return Mapping of name -> parameters_set to test the model


	Parameters

	server_storage (Storage) -- server storage object.










	
init()

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
optimize(serial_aggregator, appendix_aggregator)

	optimize server mdoel(s) and return scores to be reported


	Parameters

	
	server_storage (Storage) -- server storage object.


	serial_aggregator (SerialAggregator) -- serial aggregator instance of current
round.


	appendix_aggregator (AppendixAggregator) -- appendix aggregator instance of
current round.






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- context to be reported










	
receive_from_client(client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator)

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child










	
report(dataloaders, rounds, scores, metric_logger, device, optimize_reports, deployment_points=None)

	test on global data and report info. If a flatten dict of
str:Union[int,float] is returned from this function the content is
automatically logged using the metric logger (e.g., logall.TensorboardLogger).
metric_logger is also passed as an input argument for extra
logging operations (non scalar).


	Parameters

	
	server_storage (Storage) -- server storage object.


	dataloaders (Any) -- dict of data loaders to test the global model(s)


	round_scores (Dict[str, Dict[str, fedsim.scores.Score]]) -- dictionary of
form {'split_name':{'score_name': score_def}} for global scores to
evaluate at the current round.


	metric_logger (Any, optional) -- the logging object
(e.g., logall.TensorboardLogger)


	device (str) -- 'cuda', 'cpu' or gpu number


	optimize_reports (Mapping[Hashable, Any]) -- dict returned by
optimzier


	deployment_points (Mapping[Hashable, torch.Tensor], optional) -- output of deploy method






	Raises

	NotImplementedError -- abstract class to be implemented by child










	
send_to_client(client_id)

	returns context to send to the client corresponding to client_id.


Warning

Do not send shared objects like server model if you made any
before you deepcopy it.




	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the receiving client






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- the context to be sent in form of a Mapping










	
send_to_server(rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size, inference_batch_size, optimizer_def, lr_scheduler_def=None, device='cuda', ctx=None, step_closure=None)

	client operation on the recieved information.


	Parameters

	
	id (int) -- id of the client


	rounds (int) -- global round number


	storage (Storage) -- storage object of the client


	datasets (Dict[str, Iterable]) -- this comes from Data Manager


	train_split_name (str) -- string containing name of the training split


	scores -- Dict[str, Dict[str, Score]]: dictionary of
form {'split_name':{'score_name': Score}} for global scores to
evaluate at the current round.


	epochs (int) -- number of epochs to train


	criterion (Score) -- citerion, should be a differentiable fedsim.scores.score


	train_batch_size (int) -- training batch_size


	inference_batch_size (int) -- inference batch_size


	optimizer_def (float) -- class for constructing the local optimizer


	lr_scheduler_def (float) -- class for constructing the local lr scheduler


	device (Union[int, str], optional) -- Defaults to 'cuda'.


	ctx (Optional[Dict[Hashable, Any]], optional) -- context reveived.






	Returns

	Mapping[str, Any] -- client context to be sent to the server
















            

          

      

      

    

  

    
      
          
            
  
AvgLogits


	
class FedDF(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Ensemble Distillation for Robust Model Fusion in Federated Learning.

For further details regarding the algorithm we refer to Ensemble Distillation for
Robust Model Fusion in Federated Learning [https://openreview.net/forum?id=gjrMQoAhSRq].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number


	global_train_split (str) -- the name of train split to be used on server


	global_epochs (int) -- number of training epochs on the server









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











Warning

this algorithm needs a split for training on the server. This means that the
global datasets provided in data manager should include an extra split.




	
init(*args, **kwrag)

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
optimize(serial_aggregator, appendix_aggregator)

	optimize server mdoel(s) and return scores to be reported


	Parameters

	
	server_storage (Storage) -- server storage object.


	serial_aggregator (SerialAggregator) -- serial aggregator instance of current
round.


	appendix_aggregator (AppendixAggregator) -- appendix aggregator instance of
current round.






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- context to be reported










	
receive_from_client(client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator)

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child
















            

          

      

      

    

  

    
      
          
            
  
FedDyn


	
class FedDyn(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Implements FedDyn algorithm for centralized FL.

For further details regarding the algorithm we refer to Federated Learning Based
on Dynamic Regularization [https://openreview.net/forum?id=B7v4QMR6Z9w].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number


	alpha (float) -- FedDyn's \(\alpha\) hyper-parameter for local regularization









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











	
deploy()

	return Mapping of name -> parameters_set to test the model


	Parameters

	server_storage (Storage) -- server storage object.










	
init(*args, **kwrag)

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
optimize(serial_aggregator, appendix_aggregator)

	optimize server mdoel(s) and return scores to be reported


	Parameters

	
	server_storage (Storage) -- server storage object.


	serial_aggregator (SerialAggregator) -- serial aggregator instance of current
round.


	appendix_aggregator (AppendixAggregator) -- appendix aggregator instance of
current round.






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- context to be reported










	
receive_from_client(client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator)

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child










	
send_to_client(client_id)

	returns context to send to the client corresponding to client_id.


Warning

Do not send shared objects like server model if you made any
before you deepcopy it.




	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the receiving client






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- the context to be sent in form of a Mapping










	
send_to_server(rounds, storage, datasets, train_split_name, metrics, epochs, criterion, train_batch_size, inference_batch_size, optimizer_def, lr_scheduler_def=None, device='cuda', ctx=None, step_closure=None)

	client operation on the recieved information.


	Parameters

	
	id (int) -- id of the client


	rounds (int) -- global round number


	storage (Storage) -- storage object of the client


	datasets (Dict[str, Iterable]) -- this comes from Data Manager


	train_split_name (str) -- string containing name of the training split


	scores -- Dict[str, Dict[str, Score]]: dictionary of
form {'split_name':{'score_name': Score}} for global scores to
evaluate at the current round.


	epochs (int) -- number of epochs to train


	criterion (Score) -- citerion, should be a differentiable fedsim.scores.score


	train_batch_size (int) -- training batch_size


	inference_batch_size (int) -- inference batch_size


	optimizer_def (float) -- class for constructing the local optimizer


	lr_scheduler_def (float) -- class for constructing the local lr scheduler


	device (Union[int, str], optional) -- Defaults to 'cuda'.


	ctx (Optional[Dict[Hashable, Any]], optional) -- context reveived.






	Returns

	Mapping[str, Any] -- client context to be sent to the server
















            

          

      

      

    

  

    
      
          
            
  
FedNova


	
class FedNova(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Implements FedNova algorithm for centralized FL.

For further details regarding the algorithm we refer to Tackling the Objective
Inconsistency Problem in Heterogeneous Federated Optimization [https://arxiv.org/abs/2007.07481].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











	
receive_from_client(client_id, client_msg, train_split_name, serial_aggregator, appendix_aggregator)

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child
















            

          

      

      

    

  

    
      
          
            
  
FedProx


	
class FedProx(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Implements FedProx algorithm for centralized FL.

For further details regarding the algorithm we refer to Federated Optimization in
Heterogeneous Networks [https://arxiv.org/abs/1812.06127].


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number


	mu (float) -- FedProx's \(\mu\) hyper-parameter for local regularization









Note


	definition of
	
	
	learning rate schedulers, could be any of the ones defined at
	torch.optim.lr_scheduler or any other that implements step and
get_last_lr methods._schedulers``.







	optimizers, could be any torch.optim.Optimizer.


	model, could be any torch.Module.


	criterion, could be any fedsim.scores.Score.











	
init(*args, **kwrag)

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
send_to_client(client_id)

	returns context to send to the client corresponding to client_id.


Warning

Do not send shared objects like server model if you made any
before you deepcopy it.




	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the receiving client






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- the context to be sent in form of a Mapping










	
send_to_server(rounds, storage, datasets, train_split_name, scores, epochs, criterion, train_batch_size, inference_batch_size, optimizer_def, lr_scheduler_def=None, device='cuda', ctx=None, step_closure=None)

	client operation on the recieved information.


	Parameters

	
	id (int) -- id of the client


	rounds (int) -- global round number


	storage (Storage) -- storage object of the client


	datasets (Dict[str, Iterable]) -- this comes from Data Manager


	train_split_name (str) -- string containing name of the training split


	scores -- Dict[str, Dict[str, Score]]: dictionary of
form {'split_name':{'score_name': Score}} for global scores to
evaluate at the current round.


	epochs (int) -- number of epochs to train


	criterion (Score) -- citerion, should be a differentiable fedsim.scores.score


	train_batch_size (int) -- training batch_size


	inference_batch_size (int) -- inference batch_size


	optimizer_def (float) -- class for constructing the local optimizer


	lr_scheduler_def (float) -- class for constructing the local lr scheduler


	device (Union[int, str], optional) -- Defaults to 'cuda'.


	ctx (Optional[Dict[Hashable, Any]], optional) -- context reveived.






	Returns

	Mapping[str, Any] -- client context to be sent to the server
















            

          

      

      

    

  

    
      
          
            
  
Distributed Centralized Trainign Utils


	
serial_aggregation(server_storage, client_id, client_msg, train_split_name, aggregator, train_weight=None, other_weight=None, purge_msg=True)

	To serially aggregate received message from a client


	Parameters

	
	server_storage (Storage) -- server storage object


	client_id (int) -- client id.


	client_msg (Mapping) -- client message.


	train_split_name (str) -- name of the training split on clients


	aggregator (SerialAggregator) -- a serial aggregator to accumulate info.


	train_weight (float, optional) -- aggregation weight for trianing parameters.
If not specified, uses sample number. Defaults to None.


	other_weight (float, optional) -- aggregation weight for any other
factor/metric. If not specified, uses sample number. Defaults to None.






	Returns

	bool -- success of aggregation.












            

          

      

      

    

  

    
      
          
            
  
Centralized Federated Learnming Algorithm


	
class CentralFLAlgorithm(data_manager, metric_logger, num_clients, sample_scheme, sample_rate, model_def, epochs, criterion_def, optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=1.0), local_optimizer_def=functools.partial(<class 'torch.optim.sgd.SGD'>, lr=0.1), lr_scheduler_def=None, local_lr_scheduler_def=None, r2r_local_lr_scheduler_def=None, batch_size=32, test_batch_size=64, device='cpu', *args, **kwargs)

	Base class for centralized FL algorithm.


	Parameters

	
	data_manager (distributed.data_management.DataManager) -- data manager


	metric_logger (logall.Logger) -- metric logger for tracking.


	num_clients (int) -- number of clients


	sample_scheme (str) -- mode of sampling clients. Options are 'uniform'
and 'sequential'


	sample_rate (float) -- rate of sampling clients


	model_def (torch.Module) -- definition of for constructing the model


	epochs (int) -- number of local epochs


	criterion_def (Callable) -- loss function defining local objective


	optimizer_def (Callable) -- derfintion of server optimizer


	local_optimizer_def (Callable) -- defintoin of local optimizer


	lr_scheduler_def (Callable) -- definition of lr scheduler of server
optimizer.


	local_lr_scheduler_def (Callable) -- definition of lr scheduler of local
optimizer


	r2r_local_lr_scheduler_def (Callable) -- definition to schedule lr that is
delivered to the clients at each round (deterimined init lr of the
client optimizer)


	batch_size (int) -- batch size of the local trianing


	test_batch_size (int) -- inference time batch size


	device (str) -- cpu, cuda, or gpu number









Note

definition of
* learning rate schedulers, could be any of the ones defined at
torch.optim.lr_scheduler or any other that implements step and get_last_lr
methods.
* optimizers, could be any torch.optim.Optimizer.
* model, could be any torch.Module.
* criterion, could be any fedsim.losses.



Architecture:


[image: ../_images/arch.svg]



	
at_round_end(score_aggregator: fedsim.utils.aggregators.AppendixAggregator) → None

	to inject code at the end of rounds in training loop


	Parameters

	
	server_storage (Storage) -- server storage object.


	score_aggregator (AppendixAggregator) -- contains the aggregated scores













	
at_round_start() → None

	to inject code at the beginning of rounds in training loop.


	Parameters

	server_storage (Storage) -- server storage object.










	
deploy() → Optional[Mapping[Hashable, Any]]

	return Mapping of name -> parameters_set to test the model


	Parameters

	server_storage (Storage) -- server storage object.










	
get_device() → str

	To get the device name or number


	Returns

	str -- device name or number










	
get_global_loader_split(split_name) → Iterable

	To get the data loader for a specific global split.


	Parameters

	split_name (Hashable) -- split name.



	Returns

	Iterable -- data loader for global split <split_name>










	
get_global_scores() → Dict[str, Any]

	To instantiate and get global scores that have to be measured in the
current round (log frequencies are matched).


	Returns

	Dict[str, Any] -- mapping of name:score










	
get_global_split_scores(split_name) → Dict[str, Any]

	To instantiate and get global scores that have to be measured in the
current round (log frequencies are matched) for a specific data split.


	Parameters

	split_name (Hashable) -- name of the global data split



	Returns

	Dict[str, Any] --


	mapping of name:score. If no score is listed for the given
	split, None is returned.
















	
get_local_scores() → Dict[str, Any]

	To instantiate and get local scores that have to be measured in the current
round (log frequencies are matched).


	Returns

	Dict[str, Any] --


	mapping of name:score. If no score is listed for the given
	split, None is returned.
















	
get_local_split_scores(split_name) → Dict[str, Any]

	To instantiate and get local scores that have to be measured in the
current round (log frequencies are matched) for a specific data split.


	Parameters

	split_name (Hashable) -- name of the global data split



	Returns

	Dict[str, Any] -- mapping of name:score










	
get_model_def()

	To get the definition of the model so that one can instantiate it by
calling.


	Returns

	Callable -- definition of the model. To instantiate, you may call the
returned value with paranthesis in front.










	
get_round_number()

	To get the current round number, starting from zero.


	Returns

	int -- current round number, starting from zero.










	
get_server_storage()

	To access the public configs of the server.


	Returns

	Storage -- public server storage.










	
get_train_split_name()

	To get the name of the split used to perform local training.


	Returns

	Hashable -- name of the split used for local training.










	
hook_global_score(score_def, score_name, split_name) → None

	To hook a score measurment on global data.


	Parameters

	
	score_def (Callable) -- definition of the score used to make new instances of.
the list of existing scores could be found under fedsim.scores.


	score_name (Hashable) -- name of the score to show up in the logs.


	split_name (Hashable) -- name of the data split to apply the measurement on.













	
hook_local_score(score_def, score_name, split_name) → None

	To hook a score measurment on local data.


	Parameters

	
	score_def (Callable) -- definition of the score used to make new instances of.
the list of existing scores could be found under fedsim.scores.


	score_name (Hashable) -- name of the score to show up in the logs.


	split_name (Hashable) -- name of the data split to apply the measurement on.













	
init(*args, **kwargs) → None

	this method is executed only once at the time of instantiating the
algorithm object. Here you define your model and whatever needed during the
training. Remember to write the outcome of your processing to server_storage
for access in other methods.


Note

*args and **kwargs are directly passed through from algorithm
constructor.




	Parameters

	server_storage (Storage) -- server storage object










	
optimize(serial_aggregator: fedsim.utils.aggregators.SerialAggregator, appendix_aggregator: fedsim.utils.aggregators.AppendixAggregator) → Mapping[Hashable, Any]

	optimize server mdoel(s) and return scores to be reported


	Parameters

	
	server_storage (Storage) -- server storage object.


	serial_aggregator (SerialAggregator) -- serial aggregator instance of current
round.


	appendix_aggregator (AppendixAggregator) -- appendix aggregator instance of
current round.






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- context to be reported










	
receive_from_client(client_id: int, client_msg: Mapping[Hashable, Any], train_split_name: str, serial_aggregator: fedsim.utils.aggregators.SerialAggregator, appendix_aggregator: fedsim.utils.aggregators.AppendixAggregator) → bool

	receive and aggregate info from selected clients


	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the sender (client)


	client_msg (Mapping[Hashable, Any]) -- client context that is sent.


	train_split_name (str) -- name of the training split on clients.


	aggregator (SerialAggregator) -- aggregator instance to collect info.






	Returns

	bool -- success of the aggregation.



	Raises

	NotImplementedError -- abstract class to be implemented by child










	
report(dataloaders: Dict[str, Any], round_scores: Dict[str, Dict[str, Any]], metric_logger: Optional[Any], device: str, optimize_reports: Mapping[Hashable, Any], deployment_points: Optional[Mapping[Hashable, torch.Tensor]] = None) → Dict[str, Union[int, float]]

	test on global data and report info. If a flatten dict of
str:Union[int,float] is returned from this function the content is
automatically logged using the metric logger (e.g., logall.TensorboardLogger).
metric_logger is also passed as an input argument for extra
logging operations (non scalar).


	Parameters

	
	server_storage (Storage) -- server storage object.


	dataloaders (Any) -- dict of data loaders to test the global model(s)


	round_scores (Dict[str, Dict[str, fedsim.scores.Score]]) -- dictionary of
form {'split_name':{'score_name': score_def}} for global scores to
evaluate at the current round.


	metric_logger (Any, optional) -- the logging object
(e.g., logall.TensorboardLogger)


	device (str) -- 'cuda', 'cpu' or gpu number


	optimize_reports (Mapping[Hashable, Any]) -- dict returned by
optimzier


	deployment_points (Mapping[Hashable, torch.Tensor], optional) -- output of deploy method






	Raises

	NotImplementedError -- abstract class to be implemented by child










	
send_to_client(client_id: int) → Mapping[Hashable, Any]

	returns context to send to the client corresponding to client_id.


Warning

Do not send shared objects like server model if you made any
before you deepcopy it.




	Parameters

	
	server_storage (Storage) -- server storage object.


	client_id (int) -- id of the receiving client






	Raises

	NotImplementedError -- abstract class to be implemented by child



	Returns

	Mapping[Hashable, Any] -- the context to be sent in form of a Mapping










	
send_to_server(rounds: int, storage: Dict[Hashable, Any], datasets: Dict[str, Iterable], train_split_name: str, scores: Dict[str, Dict[str, Any]], epochs: int, criterion: torch.nn.modules.module.Module, train_batch_size: int, inference_batch_size: int, optimizer_def: Callable, lr_scheduler_def: Optional[Callable] = None, device: Union[int, str] = 'cuda', ctx: Optional[Dict[Hashable, Any]] = None, *args, **kwargs) → Mapping[str, Any]

	client operation on the recieved information.


	Parameters

	
	id (int) -- id of the client


	rounds (int) -- global round number


	storage (Storage) -- storage object of the client


	datasets (Dict[str, Iterable]) -- this comes from Data Manager


	train_split_name (str) -- string containing name of the training split


	scores -- Dict[str, Dict[str, Score]]: dictionary of
form {'split_name':{'score_name': Score}} for global scores to
evaluate at the current round.


	epochs (int) -- number of epochs to train


	criterion (Score) -- citerion, should be a differentiable fedsim.scores.score


	train_batch_size (int) -- training batch_size


	inference_batch_size (int) -- inference batch_size


	optimizer_def (float) -- class for constructing the local optimizer


	lr_scheduler_def (float) -- class for constructing the local lr scheduler


	device (Union[int, str], optional) -- Defaults to 'cuda'.


	ctx (Optional[Dict[Hashable, Any]], optional) -- context reveived.






	Returns

	Mapping[str, Any] -- client context to be sent to the server










	
train(rounds: int, num_score_report_point: Optional[int] = None, train_split_name='train') → Optional[Dict[str, Optional[float]]]

	loop over the learning pipeline of distributed algorithm for given
number of rounds.


Note


	The clients metrics are reported in the form of clients.{metric_name}.


	
	The server metrics (scores results) are reported in the form of
	server.{deployment_point}.{metric_name}












	Parameters

	
	rounds (int) -- number of rounds to train.


	num_score_report_point (int) -- limits num of points to return reports.


	train_split_name (str) -- local split name to perform training on. Defaults
to 'train'.






	Returns

	Optional[Dict[str, Union[float]]] -- collected score metrics.
















            

          

      

      

    

  

    
      
          
            
  
Data Management



	A Basic Data Manager

	Data Manager

	Data Management Utils








            

          

      

      

    

  

    
      
          
            
  
A Basic Data Manager


	
class BasicDataManager(root='data', dataset='mnist', num_partitions=500, rule='iid', sample_balance=0.0, label_balance=1.0, local_test_portion=0.0, global_valid_portion=0.0, seed=10, save_dir='partitions')

	A basic data manager for partitioning the data. Currecntly three
rules of partitioning are supported:


	
	iid:
	same label distribution among clients. sample balance determines
quota of each client samples from a lognorm distribution.







	
	dir:
	Dirichlete distribution with concentration parameter given by
label_balance determines label balance of each client.
sample balance determines quota of each client samples from a
lognorm distribution.







	
	exclusive:
	samples corresponding to each label are randomly splitted to
k clients where k = total_sample_size * label_balance.
sample_balance determines the way this split happens (quota).
This rule also is know as "shards splitting".










	Parameters

	
	root (str) -- root dir of the dataset to partition


	dataset (str) -- name of the dataset


	num_clients (int) -- number of partitions or clients


	rule (str) -- rule of partitioning


	sample_balance (float) -- balance of number of samples among clients


	label_balance (float) -- balance of the labels on each clietns


	local_test_portion (float) -- portion of local test set from trian


	global_valid_portion (float) -- portion of global valid split.
What remains from global samples goes to the test split.


	seed (int) -- random seed of partitioning


	save_dir (str, optional) -- dir to save partitioned indices.









	
get_identifiers()

	Returns identifiers to be used for saving the partition info.


	Returns

	Sequence[str] -- a sequence of str identifing class instance










	
make_datasets(root)

	makes and returns local and global dataset objects. The created datasets do
not need a transform as recompiled datasets with separately
provided transforms on the fly.


	Parameters

	
	dataset_name (str) -- name of the dataset.


	root (str) -- directory to download and manipulate data.






	Returns

	Tuple[object, object] -- local and global dataset










	
make_transforms()

	make and return the dataset trasformations for local and global split.


	Returns

	Tuple[Dict[str, Callable], Dict[str, Callable]] --


	tuple of two dictionaries,
	first, the local transform mapping and second the global transform
mapping.
















	
partition_global_data(dataset)

	partitions global data indices into splits (e.g., train, test, ...).


	Parameters

	dataset (object) -- global dataset



	Returns

	Dict[str, Iterable[int]] --     dictionary of {split:example indices of global dataset}.










	
partition_local_data(dataset)

	partitions local data indices into client-indexed Iterable.


	Parameters

	dataset (object) -- local dataset



	Returns

	Dict[str, Iterable[Iterable[int]]] --     dictionary of {split:client-indexed iterables of example indices}.
















            

          

      

      

    

  

    
      
          
            
  
Data Manager


	
class DataManager(root, seed, save_dir=None)

	DataManager base class.
Any other Data Manager is inherited from this class. There are
four abstract class methods that child classes should implement:
get_identifiers, make_datasets, make_transforms, partition_local_data.


Warning

when inheritted, super should be called at the end of the constructor
because the abstract classes are called in super's constructor!




	Parameters

	
	root (str) -- root dir of the dataset to partition


	seed (int) -- random seed of partitioning


	save_dir (str, optional) -- path to save partitioned indices.









	
get_global_dataset() → Dict[str, torch.utils.data.dataset.Dataset]

	returns the global dataset


	Returns

	Dict[str, Dataset] -- global dataset for each split










	
get_global_splits_names()

	returns name of the global splits (train, test, etc.)


	Returns

	List[str] -- list of global split names










	
get_group_dataset(ids: Iterable[int]) → Dict[str, torch.utils.data.dataset.Dataset]

	returns the local dataset corresponding to a group of given partition ids


	Parameters

	ids (Iterable[int]) -- a list or tuple of partition ids



	Returns

	Dict[str, Dataset] -- a mapping of split_name: dataset










	
get_identifiers() → Sequence[str]

	Returns identifiers to be used for saving the partition info.


	Raises

	NotImplementedError -- this abstract method should be
    implemented by child classes



	Returns

	Sequence[str] -- a sequence of str identifing class instance










	
get_local_dataset(id: int) → Dict[str, torch.utils.data.dataset.Dataset]

	returns the local dataset corresponding to a given partition id


	Parameters

	id (int) -- partition id



	Returns

	Dict[str, Dataset] -- a mapping of split_name: dataset










	
get_local_splits_names()

	returns name of the local splits (train, test, etc.)


	Returns

	List[str] -- list of local split names










	
get_oracle_dataset() → Dict[str, torch.utils.data.dataset.Dataset]

	returns all of the local datasets stacked up.


	Returns

	Dict[str, Dataset] -- Oracle dataset for each split










	
get_partitioning_name() → str

	returns unique name of the DataManager instance.
.. note::
This method can help store and retrieval of the partitioning indices, so
the experiments could reproduced on a machine.


	Returns

	str -- a unique name for the DataManager instance.










	
make_datasets(root: str) → Tuple[object, object]

	makes and returns local and global dataset objects. The created datasets do
not need a transform as recompiled datasets with separately provided transforms
on the fly.


	Parameters

	
	dataset_name (str) -- name of the dataset.


	root (str) -- directory to download and manipulate data.






	Raises

	NotImplementedError -- this abstract method should be
    implemented by child classes



	Returns

	Tuple[object, object] -- local and global dataset










	
make_transforms() → Tuple[object, object]

	make and return the dataset trasformations for local and global split.


	Raises

	NotImplementedError -- this abstract method should be
    implemented by child classes



	Returns

	Tuple[Dict[str, Callable], Dict[str, Callable]] --


	tuple of two dictionaries,
	first, the local transform mapping and second the global transform
mapping.
















	
partition_global_data(dataset: object) → Dict[str, Iterable[int]]

	partitions global data indices into splits (e.g., train, test, ...).


	Parameters

	dataset (object) -- global dataset



	Returns

	Dict[str, Iterable[int]] --     dictionary of {split:example indices of global dataset}.










	
partition_local_data(dataset: object) → Dict[str, Iterable[Iterable[int]]]

	partitions local data indices into client-indexed Iterable.


	Parameters

	dataset (object) -- local dataset



	Raises

	NotImplementedError -- this abstract method should be
    implemented by child classes



	Returns

	Dict[str, Iterable[Iterable[int]]] --     dictionary of {split:client-indexed iterables of example indices}.
















            

          

      

      

    

  

    
      
          
            
  
Data Management Utils


	
class Subset(dataset, indices, transform=None)

	Subset of a dataset at specified indices.


	Parameters

	
	dataset (Dataset) -- The whole Dataset


	indices (sequence) -- Indices in the whole set selected for subset.















            

          

      

      

    

  

    
      
          
            
  
Decentralized Distributed Learning

This package is emptt in this version.







            

          

      

      

    

  

    
      
          
            
  
Local



	Local Training and Inference








            

          

      

      

    

  

    
      
          
            
  
Local Training and Inference

Provides the basic definitions for local trainign and inference.



	Local Inference

	Step Closures

	Local Training








            

          

      

      

    

  

    
      
          
            
  
Local Inference

Inference for local client


	
local_inference(model, data_loader, scores, device='cpu', transform_y=None)

	to test the performance of a model on a test set.


	Parameters

	
	model (Module) -- model to get the predictions from


	data_loader (Iterable) -- inference data loader.


	scores (Dict[str, Score]) -- scores to evaluate


	device (str, optional) -- device to load the data into
("cpu", "cuda", or device ordinal number). This must be the same device as
the one model parameters are loaded into. Defaults to "cpu".


	transform_y (Callable, optional) -- a function that takes raw labels and modifies
them. Defaults to None.






	Returns

	int -- number of samples the evaluation is done for.












            

          

      

      

    

  

    
      
          
            
  
Step Closures


	
default_step_closure(x, y, model, criterion, optimizer, scores, max_grad_norm=1000, device='cpu', transform_grads=None, transform_y=None, **kwargs)

	one step of local training including:
* prepare mini batch of the data
* forward pass
* loss calculation
* backward pass
* transfor and modify the gradients
* take optimization step
* evaluate scores on the training mini-batch batch.


	Parameters

	
	x (Tensor) -- inputs


	y (Tensor) -- labels


	model (Module) -- model


	criterion (Callable) -- loss criterion


	optimizer (Optimizer) -- optimizer chosen and instanciated from classes under
torch.optim.


	scores -- Dict[str, Score]: dictionary of form str: Score to evaluate at the end
of the closure.


	max_grad_norm (int, optional) -- to clip the norm of the gradients.
Defaults to 1000.


	device (str, optional) -- device to load the data into
("cpu", "cuda", or device ordinal number). This must be the same device as
the one model parameters are loaded into. Defaults to "cpu".


	transform_grads (Callable, optional) -- A function the takes the model and
modified the gradients of the parameters. Defaults to None.


	transform_y (Callable, optional) -- a function that takes raw labels and modifies
them. Defaults to None.






	Returns

	Tensor -- loss value obtained from the forward pass.












            

          

      

      

    

  

    
      
          
            
  
Local Training

Training for local client


	
local_train(model, train_data_loader, epochs, steps, criterion, optimizer, lr_scheduler=None, device='cpu', step_closure=<function default_step_closure>, scores=None, max_grad_norm=1000, **step_ctx)

	local training


	Parameters

	
	model (Module) -- model to use for getting the predictions.


	train_data_loader (Iterable) -- trianing data loader.


	epochs (int) -- number of local epochs.


	steps (int) -- number of optimization epochs after the final epoch.


	criterion (Callable) -- loss criterion.


	optimizer (Optimizer) -- a torch optimizer.


	lr_scheduler (Any, optional) -- a torch Learning rate scheduler. Defaults to None.


	device (str, optional) -- device to load the data into
("cpu", "cuda", or device ordinal number). This must be the same device as
the one model parameters are loaded into. Defaults to "cpu".


	step_closure (Callable, optional) -- step closure for an optimization step.
Defaults to default_step_closure.


	scores (Dict[str, Score], optional) -- a dictionary of str:Score.
Defaults to None.


	max_grad_norm (int, optional) -- to clip the norm of the gradients.
Defaults to 1000.






	Returns

	Tuple[int, int, bool] --


	tuple of number of training samples,
	number of optimization steps, divergence.


















            

          

      

      

    

  

    
      
          
            
  
Models



	Simple Model Architectures

	Model Utils








            

          

      

      

    

  

    
      
          
            
  
Simple Model Architectures

In this file, you can find a number of models that are commonly used in FL community.
These models are used in Communication-Efficient Learning of Deep Networks from
Decentralized Data [https://arxiv.org/abs/1602.05629].


	
class SimpleCNN(num_classes=10, num_channels=1, in_height=28, in_width=28, num_filters1=32, num_filters2=64, feature_size=512)

	A simple two layer CNN Perceptron.


	Parameters

	
	num_classes (int, optional) -- number of classes. Defaults to 10.
Assigning None or a negative integer means no classifier.


	num_channels (int, optional) -- number of channels of input. Defaults to 1.


	in_height (int, optional) -- input height to resize to. Defaults to 28.


	in_width (int, optional) -- input width to resize to. Defaults to 28.


	feature_size (int, optional) -- number of features. Defaults to 512.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
get_features(x)

	Gets the extracted features. Goes through all cells except the classifier.


	Parameters

	x (Tensor) -- input tensor with shape
\((N\times C\times D_1\times D_2\times \dots\times D_n)\)
where N is batch size and C is dtermined by num_channels.



	Returns

	Tensor --


	output tensor with shape
	\((N\times O)\) where O is determined by feature_size
















	
training: bool

	








	
class SimpleCNN2(num_classes=10, num_channels=3, in_height=24, in_width=24, num_filters1=64, num_filters2=64, hidden_size=384, feature_size=192)

	A simple two layer CNN Perceptron.
This is similar to CNN model in McMahan's FedAvg paper.


	Parameters

	
	num_classes (int, optional) -- number of classes. Defaults to 10.
Assigning None or a negative integer means no classifier.


	num_channels (int, optional) -- number of channels of input. Defaults to 1.


	in_height (int, optional) -- input height to resize to. Defaults to 28.


	in_width (int, optional) -- input width to resize to. Defaults to 28.


	hidden_size (int, optional) -- number of hidden neurons. Defaults to 384.


	feature_size (int, optional) -- number of features. Defaults to 192.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
get_features(x)

	Gets the extracted features. Goes through all cells except the classifier.


	Parameters

	x (Tensor) -- input tensor with shape
\((N\times C\times D_1\times D_2\times \dots\times D_n)\)
where N is batch size and C is dtermined by num_channels.



	Returns

	Tensor --


	output tensor with shape
	\((N\times O)\) where O is determined by feature_size
















	
training: bool

	








	
class SimpleMLP(num_classes=10, num_channels=1, in_height=28, in_width=28, feature_size=200)

	A simple two layer Multi-Layer Perceptron.
This is referred to as 2NN in McMahan's FedAvg paper.


	Parameters

	
	num_classes (int, optional) -- number of classes. Defaults to 10.
Assigning None or a negative integer means no classifier.


	num_channels (int, optional) -- number of channels of input. Defaults to 1.


	in_height (int, optional) -- input height to resize to. Defaults to 28.


	in_width (int, optional) -- input width to resize to. Defaults to 28.


	feature_size (int, optional) -- number of features. Defaults to 200.









	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
get_features(x)

	Gets the extracted features. Goes through all cells except the classifier.


	Parameters

	x (Tensor) -- input tensor with shape
\((N\times C\times D_1\times D_2\times \dots\times D_n)\)
where N is batch size and C is dtermined by num_channels.



	Returns

	Tensor --


	output tensor with shape
	\((N\times O)\) where O is determined by feature_size
















	
training: bool

	










            

          

      

      

    

  

    
      
          
            
  
Model Utils


	
class ModelReconstructor(feature_extractor, classifier, connection_fn=None)

	reconstructs a model out of a feature_extractor and a classifier.


	Parameters

	
	feature_extractor (Module) -- feature-extractor module


	classifier (Module) -- classifier module


	connection_fn (Callable, optional) -- optional connection function to apply
on the output of feature-extractor before feeding to the classifier.
Defaults to None.









	
forward(input)

	Defines the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.








	
training: bool

	








	
get_output_size(in_size, pad, kernel, stride)

	Calculates the output size after applying a kernel (for one dimension).


	Parameters

	
	in_size (int) -- input size.


	pad (int) -- padding size. If set to same, input size is directly returned.


	kernel (int) -- kernel size.


	stride (int) -- size of strides.






	Returns

	int -- output size












            

          

      

      

    

  

    
      
          
            
  
Utils

Small handy functions and classes used in FedSim package



	Aggregators

	Parameters Conversion

	Dict Ops

	Import Utils

	Random Utils

	Storage








            

          

      

      

    

  

    
      
          
            
  
Aggregators


	
class AppendixAggregator(max_deque_lenght=None)

	This aggregator hold the results in a deque and performs the aggregation at
the time querying the results instead. Compared to SerialAggregator provides the
flexibility of aggregating within a certain number of past entries.


	Parameters

	max_deque_lenght (int, optional) -- maximum lenght of deque to hold the
aggregation entries. Defaults to None.






	
append(key, value, weight=1, step=0)

	Appends a new weighted entry timestamped by step.


	Parameters

	
	key (Hashable) -- key to the aggregation entry.


	value (Any) -- value of the aggregation entry.


	weight (int, optional) -- weight of the aggregation for the current entry.
Defaults to 1.


	step (int, optional) -- timestamp of the current entry. Defaults to 0.













	
append_all(entry_dict: Dict[str, float], weight=1, step=0)

	To apply append on several entries given by a dictionary.


	Parameters

	
	entry_dict (Dict[Hashable, Any]) -- dictionary of the entries.


	weight (int, optional) -- weight of the entries. Defaults to 1.


	step (int, optional) -- timestamp of the current entries. Defaults to 0.













	
get(key: str, k: Optional[int] = None)

	fetches the weighted result


	Parameters

	
	key (str) -- the name of the variable


	k (int, optional) -- limits the number of points to aggregate.






	Returns

	Any -- the result of the aggregation










	
get_steps(key)

	fetches the timestamps of the aggregation.


	Parameters

	key (Hashable) -- aggregation key.



	Raises

	Exception -- key not in the aggregator.



	Returns

	List[Any] -- list of timestamps appended up to the maximum lenght of the
internal deque.










	
get_values(key)

	fetches the values of the aggregation.


	Parameters

	key (Hashable) -- aggregation key.



	Raises

	Exception -- key not in the aggregator.



	Returns

	List[Any] -- list of values appended up to the maximum lenght of the
internal deque.










	
get_weights(key)

	fetches the weights of the aggregation.


	Parameters

	key (Hashable) -- aggregation key.



	Raises

	Exception -- key not in the aggregator.



	Returns

	List[Any] -- list of weights appended up to the maximum lenght of the
internal deque.










	
items()

	Generator of (key, result) to get aggregation result of all keys in the
aggregator.


	Yields

	Tuple[Hashable, Any] -- pair of key, aggregation result.










	
keys()

	fetches the keys of entries aggregated so far.


	Returns

	Iterable -- all aggregation keys.










	
pop(key)

	Similar to get method except that the entry is removed from the
aggregator at the end.


	Parameters

	key (Hashable) -- key to the entry.



	Raises

	Exception -- key does not exist in the aggregator.



	Returns

	Any -- result of the aggregation.










	
pop_all()

	Collects all the aggregation results in a dictionary and removes everything
from the aggregator at the end.


	Returns

	Dict[Hashable, Any] -- mapping of key to aggregation result.














	
class SerialAggregator

	Serially aggregats arbitrary number of weighted or unweigted variables.


	
add(key, value, weight=None)

	adds a new item to the aggregation


	Parameters

	
	key (Hashable) -- key of the entry


	value (Any) -- current value of the entry. Type of this value must support
addition. Support for division is required if the aggregation is
weighted.


	weight (float, optional) -- weight of the current entry. If not specified,
aggregation becomes unweighted (equal to accumulation). Defaults to
None.













	
get(key)

	Fetches the current result of the aggregation. If the aggregation is
weighted the returned value is weighted average of the entry values.


	Parameters

	key (Hashable) -- key to the entry.



	Raises

	Exception -- key does not exist in the aggregator.



	Returns

	Any -- result of the aggregation.










	
get_sum(key)

	Fetches the weighted sum (no division).


	Parameters

	key (Hashable) -- key to the entry.



	Raises

	Exception -- key does not exist in the aggregator.



	Returns

	Any -- result of the weighted sum of the entries.










	
get_weight(key)

	Fetches the sum of weights of the weighted averaging.


	Parameters

	key (Hashable) -- key to the entry.



	Raises

	Exception -- key does not exist in the aggregator.



	Returns

	Any -- sum of weights of the aggregation.










	
items()

	Generator of (key, result) to get aggregation result of all keys in the
aggregator.


	Yields

	Tuple[Hashable, Any] -- pair of key, aggregation result.










	
keys()

	fetches the keys of entries aggregated so far.


	Returns

	Iterable -- all aggregation keys.










	
pop(key)

	Similar to get method except that the entry is removed from the
aggregator at the end.


	Parameters

	key (Hashable) -- key to the entry.



	Raises

	Exception -- key does not exist in the aggregator.



	Returns

	Any -- result of the aggregation.










	
pop_all()

	Collects all the aggregation results in a dictionary and removes everything
from the aggregator at the end.


	Returns

	Dict[Hashable, Any] -- mapping of key to aggregation result.
















            

          

      

      

    

  

    
      
          
            
  
Parameters Conversion


	
initialize_module(module: torch.nn.modules.module.Module, vec: torch.Tensor, clone=True, detach=True)

	initializes a module's parameters with a 1-D vector


	Parameters

	
	module (Module) -- module to initialize weights


	vec (Tensor) -- a 1-D Tensor


	clone (bool, optional) -- clones the vector before initilization.
Defaults to True.


	detach (bool, optional) -- detaches the output before the initialization.
Defaults to True.













	
vector_to_named_parameters_like(vec: torch.Tensor, named_parameters_like: collections.OrderedDict) → collections.OrderedDict

	Convert one vector to new named parameters like the ones provided


	Parameters

	
	vec (Tensor) -- a single vector represents the parameters of a model.


	parameters (OrderedDict) -- a dictioanry of Tensors that are the
parameters of a model. This is only used to get the sizes and keys. New
parametere are defined.













	
vector_to_parameters_like(vec, parameters_like)

	Convert one vector to new parameters like the ones provided


	Parameters

	
	vec (Tensor) -- a single vector represents the parameters of a model.


	parameters (Iterable[Tensor]) -- an iterator of Tensors that are the
parameters of a model. This is only used to get the sizes. New
parametere are defined.













	
vectorize_module(module: torch.nn.modules.module.Module, clone=True, detach=True)

	convert parameters of a module to a vector


	Parameters

	
	module (Module) -- module to convert the parameters of


	clone (bool, optional) -- clones the output. Defaults to True.


	detach (bool, optional) -- detaches the output. Defaults to True.






	Returns

	Module -- 1-D Tensor of all parameters in the module










	
vectorize_module_grads(module: torch.nn.modules.module.Module, clone=True, detach=True)

	convert parameters gradients of a module to a vector


	Parameters

	
	module (Module) -- module to convert the parameters of


	clone (bool, optional) -- clones the output. Defaults to True.


	detach (bool, optional) -- detaches the output. Defaults to True.






	Returns

	Module --


	1-D Tensor of gradients of all parameters in the module. None if at
	least grad of one children deos not exist.


















            

          

      

      

    

  

    
      
          
            
  
Dict Ops


	
apply_on_dict(dict_obj, fn, return_as_dict=False, *args, **kwargs)

	Applies an operation defined by fn on all the entries in a dectionary.


	Parameters

	
	dict_obj (_type_) -- _description_


	fn (Callable) -- method to apply on dictionary entries. The signature must be
fn(key, value, *args, **kwargs). where *args and **kwargs are
forwarded from apply_on_dict method to fn.


	return_as_dict (bool, optional) -- If True a new dictionary with modified entries
is returned.






	Returns

	_type_ -- _description_












            

          

      

      

    

  

    
      
          
            
  
Import Utils


	
get_from_module(module_name, entry_name)

	Imports a module and returns it desired member if existed.


	Parameters

	
	module_name (str) -- name of the module


	entry_name (str) -- name of the definition within the module.






	Returns

	Any -- the desired definition in the given module if existed; None otherwise.












            

          

      

      

    

  

    
      
          
            
  
Random Utils


	
set_seed(seed, use_cuda) → None

	sets default random generator seed of numpy, random and torch.
In case of using cuda, related randomness is also taken care of.


	Parameters

	
	seed (_type_) -- _description_


	use_cuda (_type_) -- _description_















            

          

      

      

    

  

    
      
          
            
  
Storage


	
class Storage

	storage class to save and retrieve objects.


	
change_protection(key, read_protected=False, write_protected=False, silent=False)

	changes the protection policy of an entry


	Parameters

	
	key (Hashable) -- key to the entry


	read_protected (bool, optional) -- read protection. Defaults to False.


	write_protected (bool, optional) -- write protection. Defaults to False.


	silent (bool) -- if False and and any protection changes, a warning is
printed. Defaults to False.













	
get_all_keys()

	Fetches the keys of all the objects written to the storage so far including
read protected ones.


	Returns

	Iterable[str] -- an iterable of the keys to the










	
get_keys()

	Fetches the keys of the objects written to the storage so far.


Note

to get keys of all entries included read protected ones call
get_all_keys instead.




	Returns

	Iterable[str] -- an iterable of the keys to the










	
get_protection_status(key)

	fetches the protection status of an entry.


	Parameters

	key (Hashable) -- key to the entry



	Returns

	Tuple[bool, bool] -- read and write protection status respectively.










	
read(key, silent=False)

	read from the storage.


	Parameters

	
	key (Hashable) -- key to fetch the desired object.


	silent (bool) -- if False and entry is read protected, a warning is printed.
Defaults to False.






	Returns

	Any -- the desired object. If key does not exist, None is returned.










	
remove(key, silent=False)

	removes an entry from the storage.


	Parameters

	
	key (Hashable) -- key to the entry.


	silent (bool, optional) -- if False and entry is write protected a warning is
printed. Defaults to False.













	
write(key, obj, read_protected=False, write_protected=False, silent=False)

	writes to the storage.


	Parameters

	
	key (Hashable) -- key to access the object in future retrievals


	obj (Any) -- object to store


	read_protected (bool) -- prints warning if in future key accessed by a read
call. Defaults to False.


	write_protected (bool) -- print warning if in future key accessed by a write
call. Defaults to False.


	silent (bool) -- if False and entry is write protected, a warning is printed.
Defaults to False.



















            

          

      

      

    

  

    
      
          
            
  
Fedsim Scores


	
class Accuracy(log_freq: int = 1, split='test', score_name='accuracy', reduction: str = 'micro')

	updatable accuracy score


	
__call__(input, target) → torch.Tensor

	updates the accuracy score on a mini-batch detached from the computational
graph. It also returns the current batch score without detaching from the graph.


	Parameters

	
	input (Tensor) -- Predicted unnormalized scores (often referred to aslogits); see Shape section below for supported shapes.


	target (Tensor) -- Ground truth class indices or class probabilities;
see Shape section below for supported shapes.








Shape:



	Input: Shape \((N, C)\).


	
	Target: shape \((N)\) where each
	value should be between \([0, C)\).









where:


\[\begin{split}\begin{aligned}
    C ={} & \text{number of classes} \\
    N ={} & \text{batch size} \\
\end{aligned}\end{split}\]





	Returns

	Tensor -- accuracy score of current batch










	Parameters

	
	log_freq (int, optional) -- how many steps gap between two evaluations.
Defaults to 1.


	split (str, optional) -- data split to evaluate on . Defaults to 'test'.


	score_name (str) -- name of the score object


	reduction (str) -- Specifies the reduction to apply to the output:
'micro' | 'macro'. 'micro': as if mini-batches are
concatenated. 'macro': mean of accuracy of each mini-batch
(update). Default: 'micro'









	
get_score() → float

	returns the score


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	float -- the score










	
is_differentiable() → bool

	to check if the score is differentiable (to for ex. use as loss function).


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	bool -- True if the output of the call is differentiable.










	
reset() → None

	resets the internal buffers, makes it ready to start collecting


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes














	
class CrossEntropyScore(log_freq: int = 1, split='test', score_name='cross_entropy_score', weight=None, reduction: str = 'micro', label_smoothing: float = 0.0)

	updatable cross entropy score


	
__call__(input, target) → torch.Tensor

	updates the cross entropy score on a mini-batch detached from the
computational graph. It also returns the current batch score without detaching
from the graph.


	Parameters

	
	input (Tensor) -- Predicted unnormalized scores (often referred to aslogits); see Shape section below for supported shapes.


	target (Tensor) -- Ground truth class indices or class probabilities;
see Shape section below for supported shapes.








Shape:



	Input: shape \((C)\), \((N, C)\).


	
	Target: shape \(()\), \((N)\) where each
	value should be between \([0, C)\).









where:


\[\begin{split}\begin{aligned}
    C ={} & \text{number of classes} \\
    N ={} & \text{batch size} \\
\end{aligned}\end{split}\]





	Returns

	Tensor -- cross entropy score of current batch










	Parameters

	
	log_freq (int, optional) -- how many steps gap between two evaluations.
Defaults to 1.


	split (str, optional) -- data split to evaluate on . Defaults to 'test'.


	score_name (str) -- name of the score object


	reduction (str) -- Specifies the reduction to apply to the output:


	``'micro'`` | ``'macro'``. ``'micro'`` -- as if mini-batches are


	concatenated. ``'macro'`` -- mean of cross entropy of each mini-batch


	(update). Default -- 'micro'









	
get_score() → float

	returns the score


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	float -- the score










	
is_differentiable() → bool

	to check if the score is differentiable (to for ex. use as loss function).


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	bool -- True if the output of the call is differentiable.










	
reset() → None

	resets the internal buffers, makes it ready to start collecting


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes














	
class KLDivScore(log_freq: int = 1, split='test', score_name='kl_dic_score', reduction: str = 'micro', log_target=False)

	updatable pointwise KL-divergence score


	
__call__(input, target) → torch.Tensor

	updates the KL-divergence score on a mini-batch detached from the
computational graph. It also returns the current batch score without detaching
from the graph.


	Parameters

	
	input (Tensor) -- Predicted unnormalized scores (often referred to aslogits); see Shape section below for supported shapes.


	target (Tensor) -- Ground truth class indices or class probabilities;
see Shape section below for supported shapes.









	Shape:
	
	Input: \((*)\), where \(*\) means any number of dimensions.


	Target: \((*)\), same shape as the input.


	
	Output: scalar by default. If reduction is 'none',
	then \((*)\), same shape as the input.














	Returns

	Tensor -- KL-divergence score of current batch










	Parameters

	
	log_freq (int, optional) -- how many steps gap between two evaluations.
Defaults to 1.


	split (str, optional) -- data split to evaluate on . Defaults to 'test'.


	score_name (str) -- name of the score object


	reduction (str) -- Specifies the reduction to apply to the output:


	``'micro'`` | ``'macro'``. ``'micro'`` -- as if mini-batches are


	concatenated. ``'macro'`` -- mean of cross entropy of each mini-batch


	(update). Default -- 'micro'









	
get_score() → float

	returns the score


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	float -- the score










	
is_differentiable() → bool

	to check if the score is differentiable (to for ex. use as loss function).


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	bool -- True if the output of the call is differentiable.










	
reset() → None

	resets the internal buffers, makes it ready to start collecting


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes














	
class Score(log_freq: int = 1, split='test', score_name='', reduction='micro')

	Score base class.


	
__call__(input, target)

	updates the score based on a mini-batch of input and target


	Parameters

	
	input (Tensor) -- Predicted unnormalized scores (often referred to aslogits); see Shape section below for supported shapes.


	target (Tensor) -- Ground truth class indices or class probabilities;
see Shape section below for supported shapes.






	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes










	Parameters

	
	log_freq (int, optional) -- how many steps gap between two evaluations.
Defaults to 1.


	split (str, optional) -- data split to evaluate on . Defaults to 'test'.


	score_name (str) -- name of the score object


	reduction (str) -- Specifies the reduction to apply to the output:
'micro' | 'macro'. 'micro': as if mini-batches are
concatenated. 'macro': mean of score of each mini-batch
(update). Default: 'micro'









	
get_name() → str

	gives the name of the score


	Returns

	str -- score name










	
get_score() → float

	returns the score


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	float -- the score










	
is_differentiable() → bool

	to check if the score is differentiable (to for ex. use as loss function).


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes



	Returns

	bool -- True if the output of the call is differentiable.










	
reset() → None

	resets the internal buffers, makes it ready to start collecting


	Raises

	NotImplementedError -- This abstract method should be implemented by child
    classes
















            

          

      

      

    

  

    
      
          
            
  
FedSim cli



	fed-learn

	fed-tune
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fed-learn


fedsim-cli fed-learn

Simulates a Federated Learning system.

fedsim-cli fed-learn [OPTIONS]





Options


	
-r, --rounds <rounds>

	number of communication rounds.


	Default

	100










	
-d, --data-manager <data_manager>

	name of data manager.


	Default

	BasicDataManager










	
--train-split-name <train_split_name>

	name of local split to train train on


	Default

	train










	
-n, --n-clients <n_clients>

	number of clients.


	Default

	500










	
--client-sample-scheme <client_sample_scheme>

	client sampling scheme (uniform or sequential for now).


	Default

	uniform










	
-c, --client-sample-rate <client_sample_rate>

	mean portion of num clients to sample.


	Default

	0.01










	
-a, --algorithm <algorithm>

	federated learning algorithm.


	Default

	FedAvg










	
-m, --model <model>

	model architecture.


	Default

	SimpleMLP










	
-e, --epochs <epochs>

	number of local epochs.


	Default

	5










	
--criterion <criterion>

	loss function to use (any differentiable fedsim.scores.Score).


	Default

	CrossEntropyScore, log_freq:50










	
--batch-size <batch_size>

	local batch size.


	Default

	32










	
--test-batch-size <test_batch_size>

	inference batch size.


	Default

	64










	
--optimizer <optimizer>

	server optimizer


	Default

	SGD, lr:1.0










	
--local-optimizer <local_optimizer>

	local optimizer


	Default

	SGD, lr:0.1, weight_decay:0.001










	
--lr-scheduler <lr_scheduler>

	lr scheduler for server optimizer


	Default

	StepLR, step_size:1, gamma:1.0










	
--local-lr-scheduler <local_lr_scheduler>

	lr scheduler for server optimizer


	Default

	StepLR, step_size:1, gamma:1.0










	
--r2r-local-lr-scheduler <r2r_local_lr_scheduler>

	lr scheduler for round to round local optimization


	Default

	StepLR, step_size:1, gamma:1










	
-s, --seed <seed>

	seed for random generators after data is partitioned.






	
--device <device>

	device to load model and data one






	
--log-dir <log_dir>

	directory to store the logs.






	
--n-point-summary <n_point_summary>

	number of last score report points to store and get the final average        performance from.


	Default

	10










	
--local-score <local_score>

	hooks a score object to a split of local datasets. Choose the score classes        from fedsim.scores. It is possible to call this option multiple times.






	
--global-score <global_score>

	hooks a score object to a split of global datasets. Choose the score classes        from fedsim.scores. It is possible to call this option multiple times.
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fed-tune


fedsim-cli fed-tune

Tunes a Federated Learning system.

fedsim-cli fed-tune [OPTIONS]





Options


	
--n-iters <n_iters>

	number of iterations to ask and tell the skopt optimizer


	Default

	10










	
--skopt-n-initial-points <skopt_n_initial_points>

	number of initial points for skopt optimizer


	Default

	10










	
--skopt-random-state <skopt_random_state>

	random state for skopt optimizer


	Default

	10










	
--skopt-base-estimator <skopt_base_estimator>

	skopt estimator


	Default

	GP



	Options

	GP | RF | ET | GBRT










	
--eval-metric <eval_metric>

	complete name of the metric (returned from train method of algorithm) to        minimize (or maximize if --maximize is passed)


	Default

	server.avg.test.cross_entropy_score










	
--maximize, --minimize

	complete name of the metric (returned from train method of algorithm) to        minimize or maximize






	
-r, --rounds <rounds>

	number of communication rounds.


	Default

	100










	
-d, --data-manager <data_manager>

	name of data manager.


	Default

	BasicDataManager










	
--train-split-name <train_split_name>

	name of local split to train train on


	Default

	train










	
-n, --n-clients <n_clients>

	number of clients.


	Default

	500










	
--client-sample-scheme <client_sample_scheme>

	client sampling scheme (uniform or sequential for now).


	Default

	uniform










	
-c, --client-sample-rate <client_sample_rate>

	mean portion of num clients to sample.


	Default

	0.01










	
-a, --algorithm <algorithm>

	federated learning algorithm.


	Default

	FedAvg










	
-m, --model <model>

	model architecture.


	Default

	SimpleMLP










	
-e, --epochs <epochs>

	number of local epochs.


	Default

	5










	
--criterion <criterion>

	loss function to use (defined under fedsim.losses).


	Default

	CrossEntropyScore, log_freq:50










	
--batch-size <batch_size>

	local batch size.


	Default

	32










	
--test-batch-size <test_batch_size>

	inference batch size.


	Default

	64










	
--optimizer <optimizer>

	server optimizer


	Default

	SGD, lr:1.0










	
--local-optimizer <local_optimizer>

	local optimizer


	Default

	SGD, lr:0.1, weight_decay:0.001










	
--lr-scheduler <lr_scheduler>

	lr scheduler for server optimizer


	Default

	StepLR, step_size:1, gamma:1.0










	
--local-lr-scheduler <local_lr_scheduler>

	lr scheduler for server optimizer


	Default

	StepLR, step_size:1, gamma:1.0










	
--r2r-local-lr-scheduler <r2r_local_lr_scheduler>

	lr scheduler for round to round local optimization


	Default

	StepLR, step_size:1, gamma:0.999










	
-s, --seed <seed>

	seed for random generators after data is partitioned.






	
--device <device>

	device to load model and data one






	
--log-dir <log_dir>

	directory to store the logs.






	
--n-point-summary <n_point_summary>

	number of last score report points to store and get the final average        performance from.


	Default

	10










	
--local-score <local_score>

	hooks a score object to a split of local datasets. Choose the score classes        from fedsim.scores. It is possible to call this option multiple times.






	
--global-score <global_score>

	hooks a score object to a split of global datasets. Choose the score classes        from fedsim.scores. It is possible to call this option multiple times.
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Contributor guide


Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.


Bug reports

When reporting a bug [https://github.com/varnio/fedsim/issues] please include:



	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.









Documentation improvements

fedsim could always use more documentation, whether as part of the
official fedsim docs, in docstrings, or even on the web in blog posts,
articles, and such.



Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/varnio/fedsim/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that code contributions are welcome :)






Development

To set up fedsim for local development:


	Fork fedsim [https://github.com/varnio/fedsim]
(look for the "Fork" button).


	Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/fedsim.git







	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you're done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox







	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.





Pull Request Guidelines

If you need some code review or feedback while you're developing the code just make the pull request.

For merging, you should:


	Include passing tests (run tox).


	Update documentation when there's new API, functionality etc.


	Add a note to CHANGELOG.rst about the changes.


	Add yourself to AUTHORS.rst.






Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature





To run all the test environments in parallel:

tox -p auto








Authors


	Farshid Varno - https://fvarno.github.io/


	William Taylor-Melanson - https://github.com/wtaylor17
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